Senior Design Team 15;
Debugger and Visualizer
for a Shared Sense of
Time on Batteryless
Sensor Networks

Adam Ford Anthony Rosenhamer
Allan Juarez Ouentin Urbanowicz
Riley Thoma Maksym Nakonechnyy

Client/Advisor: Dr. Henry Duwe

Project Vision

Our goal is to create a set of software tools enabling researchers to simulate,
visualize, and debug shared timekeeping in batteryless sensor networks.
Furthering this research may enable a wider range of sensing applications and a
better connected, more sustainable world through the Internet of Things.

Conceptual Diagram

Simulator
e Simulator

1
1Sensor

o Models a sensor network Nodes —— g ; Backend

— 1
! / 1 Timing data & node ! Socket
V. | . ! ¥ ' state changes 1 connection logic Data Data storage
! YN ' via sockets ' and data processing handling
® VisuallZzer ;) ' ; I handling I
' P \ 7 ' 1
' ; \ \ / ' '
! ‘ \, _/ N ' :
' '
: 1
1

'
Database |

o Displays details about the : & —0
Sensor network § Sensor

Network

Frontend

e Built for a research team

e Customized to test various
approaches for maintaining a
shared sense of time

Trace file Timing statistics

1
Timing data & * Data importing
node state
changfes

System Overview

Functional Requirements

Simulator
e Shall generate the data in the same format as real data.

e Shall accept a seed value for pseudo-random simulation.

Visualizer (Frontend)
e Shall “replay” past data.
e Shall visualize the statistics of system communication.

System-Wide
e Shall monitor which nodes are currently communicating.
e Shall store past data.

Non-functional Requirements

Simulator

e The simulator shall run natively in a Linux environment.

e The simulator shall maintain sub-second accuracy of timing.

e The simulator shall produce on-time/off-time data from a user-provided function.

Visualizer
e The visualizer shall update node status every second.
e The visualizer shall be implemented as a web application.

System-wide
e The system shall be modular to allow for maintainability.
e The system shall not lose any sensor readings.

Each Simulation will
have multiple Node
instances

Hardware Sniffer Live Data

(Not to be developed,
but should be considered)

Simulation

Nodes

Snifier

Simulator

Socket
Communication

£

Simulated

pata |

Via Socket

Structured
Data

Inner Logic

General GUI

Graphing
and Visualization

Frontend

_(

REST API

g Backend Communication

Data Retrieval

Export Simulated
Data

Import Data
to Display

Backend

Data Storage
(Database Communication)

Data Retrieval
(Socket Communication)

£

Data Processing
and Conversion

API| Endpoints

Serve Live Data

Receive
Import/Export Request

System Block Diagram

Structured

O Data

Database

Project Plan - Task Decompaosition

e Tasks are subdivided into design,
simulator, frontend, and backend work

e Simulator

o Data inputting and outputting

o Node development

o Sniffer development
e Frontend

o One main path with some parallels
e Backend

o One path for data handling

o One path for API-related work

DESIGN

SIMULATOR

FRONTEND

BACKEND

Task Graphs

Project Plan - Risk Management

e Provide live current data
o Data needs to be generated, processed, and displayed
o Main components working in real time
o Sub-one second latency requirement
o Conscious of efficiency when coding the components

e Query and return past data to “replay”
o Retrieve old data to display again

o Mitigate by prototyping the replay feature
o Future proof to make sure data is saved and easily retrievable

Project Plan - Timeline

e Gantt charts show task timelines for

each section of the project

ACTIVITY

Design Document v1
Design Document v2
Final Design Document

Final Presentation

SIMULATOR

ACTIVITY

Create simulation module

Create node module

Add node properties

Add variability to node properties

Create sniffer module

Handle communication between nodes
Implement outputting data in the correct format
Add communication with visualizer via sockets
Develop trace file outputting

Implement real data functionality

Simulator Gantt Chart

SEMESTER 2

MARCH
ACTIVITY
Make and setup database connection
Process real or simluated data in a storable format
Store data in database from backend
Drop data when database is full or it is too old
Provide live current data
Create API Endpoints
Accept input data from user
Process imported data files
Query and return past data to "replay"

Query and return past data to user as export

SEMESTER 2

MARCH APRIL MAY
ACTIVITY

3 4 5 6 7 8 9 10 11 12 13 14
Design a GUI
Retrieve and process data from backend
Learn how to graph and visualize the data
Develop the first panel
Develop the second panel
Develop the remaining panels
Import data to the database
Export data to the database
Import a log of the error in nodes

Frontend Gantt Chart

System Design - Frontend

e Consists of two logical components:
o Presenter/Adapter
o Server Communicator
e INndependent

e Communicate via callbacks and Comparer - F | 4
EVG ntBUS — P o = —>| ‘Backend Application

e Communication with the backend via HTTP.
e Technologies:

o HTML & CSS

o React JavaScript

o Jest, Selenium, Mirage JS Frontend Block Diagram

System Design - Backend

e In the backend we will have two developers

o One for working on the API's to the
frontend and simulator

o The other developer will work on the
data handling making sure the data is
cleaned and stored.

e Technologies [—
o EXpressdS
o Jest
o MongoDB

Simulator

Backend Block Diagram

System Design - Simulator

e Python classes to represent the
simulation, sniffer, and nodes

e Uses discrete-event simulation to
model the life of the sensor network

e Technologies
o Python

Simulation

+ sniffer
+ nodes[]

+ run(duration)

|1

1

o SiImPy

Sniffer

o socket library

+trueTime
+ nodes|]

+ receiveNodeTime(Node n)
+ receiveComm(Node send, Node rec)

o pytest

3“1

Node

+id

+ timeEstimate

+ state
+nextOnTime
+onTimes[]

+ neighbors[]

- pClkDischargeRate
- sysDischargeRate

+ addNeighbor(Node n)
+ sendMessage(Node n)
+ receiveMessage(Node n, message)

Simulator Class Diagram

Prototype Demo

- N\

Project Plan — Milestones

Major Minor
e Design Document Final Draft e Simulator algorithm working and
e Minimum Viable Product built producing data
e Simulator Complete e Individual Frontend panels
e Frontend Complete created and working
e Backend Complete e GUI s fully designed
e Integration Complete (Final Release) e Importing and Exporting

functionality is complete

e Database can store simulator
data and provide it to the
frontend

e Database can store past data for
replayability

e Database set up and working

Test Plan

e Frequently unit test each application component individually with mock objects
e Interface and integration testing with mock objects and example data
o Visualizer frontend and backend (REST API)
o Simulator and visualizer backend (sockets)
o Simulator and visualizer frontend (trace file export & import)
e System-level testing with example data and generated data
e Acceptance testing with client for each feature implemented

Current Plans

e Wrapping up the designing of the project

e Also started working on all three sections of the project(Simulator, Backend, Frontend)

What's next?

e \We are on schedule to finish the project
e Quentin and Tony will work on the Simulator module
e Adam and Allan will work on and finish the Backend module

e Maksym and Riley will work on and finish the Frontend module

Thank you!

Questions?

