
Senior Design Team 15:
Debugger and Visualizer

for a Shared Sense of
Time on Batteryless

Sensor Networks
Adam Ford Anthony Rosenhamer
Allan Juarez Quentin Urbanowicz
Riley Thoma Maksym Nakonechnyy
Client/Advisor: Dr. Henry Duwe

Project Vision

Our goal is to create a set of software tools enabling researchers to simulate,
visualize, and debug shared timekeeping in batteryless sensor networks.
Furthering this research may enable a wider range of sensing applications and a
better connected, more sustainable world through the Internet of Things.

Conceptual Diagram
● Simulator

○ Models a sensor network
● Visualizer

○ Displays details about the
sensor network

● Built for a research team
● Customized to test various

approaches for maintaining a
shared sense of time

System Overview

Functional Requirements
Simulator

● Shall generate the data in the same format as real data.

● Shall accept a seed value for pseudo-random simulation.

Visualizer (Frontend)

● Shall “replay” past data.
● Shall visualize the statistics of system communication.

System-Wide

● Shall monitor which nodes are currently communicating.
● Shall store past data.

Non-functional Requirements

System-wide
● The system shall be modular to allow for maintainability.
● The system shall not lose any sensor readings.

Visualizer
● The visualizer shall update node status every second.
● The visualizer shall be implemented as a web application.

Simulator
● The simulator shall run natively in a Linux environment.
● The simulator shall maintain sub-second accuracy of timing.
● The simulator shall produce on-time/off-time data from a user-provided function.

System Block Diagram

Project Plan - Task Decomposition

● Tasks are subdivided into design,
simulator, frontend, and backend work

● Simulator
○ Data inputting and outputting
○ Node development
○ Sniffer development

● Frontend
○ One main path with some parallels

● Backend
○ One path for data handling
○ One path for API-related work

Task Graphs

Project Plan - Risk Management
● Provide live current data

○ Data needs to be generated, processed, and displayed
○ Main components working in real time
○ Sub-one second latency requirement
○ Conscious of efficiency when coding the components

● Query and return past data to “replay”
○ Retrieve old data to display again
○ Mitigate by prototyping the replay feature
○ Future proof to make sure data is saved and easily retrievable

Project Plan - Timeline
● Gantt charts show task timelines for
 each section of the project

Frontend Gantt Chart

Backend Gantt ChartDesign Gantt Chart

Simulator Gantt Chart

System Design - Frontend
● Consists of two logical components:

○ Presenter/Adapter
○ Server Communicator

● Independent
● Communicate via callbacks and

EventBus
● Communication with the backend via HTTP.
● Technologies:

○ HTML & CSS
○ React JavaScript
○ Jest, Selenium, Mirage JS Frontend Block Diagram

System Design - Backend
● In the backend we will have two developers

○ One for working on the API’s to the
frontend and simulator

○ The other developer will work on the
data handling making sure the data is
cleaned and stored.

● Technologies
○ ExpressJS
○ Jest
○ MongoDB

Backend Block Diagram

System Design - Simulator

● Python classes to represent the
simulation, sniffer, and nodes

● Uses discrete-event simulation to
model the life of the sensor network

● Technologies
○ Python
○ SimPy
○ socket library
○ pytest

Simulator Class Diagram

Prototype Demo

● Design Document Final Draft
● Minimum Viable Product built
● Simulator Complete
● Frontend Complete
● Backend Complete
● Integration Complete (Final Release)

● Simulator algorithm working and
producing data

● Individual Frontend panels
created and working

● GUI is fully designed
● Importing and Exporting

functionality is complete
● Database can store simulator

data and provide it to the
frontend

● Database can store past data for
replayability

● Database set up and working

Project Plan – Milestones

Major Minor

Test Plan

● Frequently unit test each application component individually with mock objects
● Interface and integration testing with mock objects and example data

○ Visualizer frontend and backend (REST API)
○ Simulator and visualizer backend (sockets)
○ Simulator and visualizer frontend (trace file export & import)

● System-level testing with example data and generated data
● Acceptance testing with client for each feature implemented

● Wrapping up the designing of the project

● Also started working on all three sections of the project(Simulator, Backend, Frontend)

Current Plans

What’s next?
● We are on schedule to finish the project

● Quentin and Tony will work on the Simulator module

● Adam and Allan will work on and finish the Backend module

● Maksym and Riley will work on and finish the Frontend module

Thank you!
Questions?

